Future in the results of modern scientific research August 2025

https://www.proconference.org/index.php/gec/article/view/gec40-00-026
DOI: 10.30890/2709-1783.2025-40-00-026

UDC 004.2
CYBERSECURITY-DRIVEN APPROACH TO END-OF-LIFE SOFTWARE
MANAGEMENT: ADDRESSING VULNERABILITY RISKS THROUGH
STANDARDIZED EOL PROTOCOLS

Demianchuk S.

Independent researcher
ORCID: 0009-0000-2838-9052
US4, Cary NC 27513

Abstract. Software End-of-Life (EoL) management represents a critical yet often overlooked
aspect of the software development lifecycle, particularly in the open-source ecosystem where
decentralized development and varied maintenance models create unique challenges.
The lack of standardized approaches exposes organizations to significant security, compliance, and
sustainability risks. This paper examines the definitions, taxonomy, and challenges of EoL in
software, with particular emphasis on open-source contexts. It highlights the benefits of a
standardized framework, including improved communication, trust, planning, and supply chain
security. The study demonstrates that the standardization of software EoL represents a critical
advancement for ensuring sustainable open-source ecosystems, regulatory compliance, and
enhanced resilience across the software supply chain.

Key words: Eol, end-of-life, end of support, end of security support, end of sales, software
lifecycle, cybersecurity, vulnerability management

Introduction.

The rapid development of a new software for the critical infrastructure and
enterprise systems has created an urgent need for standardized approaches to software
lifecycle management, particularly regarding End-of-Life (EoL), End-of-Security-
Support (EoSSec), End-of-Sale (EoS) and other states of hardware, software, services
and specifications. Organizations today face significant risks when software reaches
its end-of-life status, as it no longer receives critical security updates or patches. The
open-source ecosystem, characterized by its distributed development model and
varied maintenance structures, presents unique challenges that existing proprietary
software lifecycle frameworks cannot adequately address due to lack of the
standardized way to report the end-of-life information. Software is malleable and
resistance to physical decay - fundamentally challenge traditional lifecycle
management approaches. Unlike hardware, software evolves iteratively through
updates, patches, and modifications to align with changing user needs and

technological landscapes. This dynamic nature complicates the identification of

Conference proceedings 25

Future in the results of modern scientific research August 2025

deterioration indicators and safety thresholds [1], requiring novel frameworks for
assessing when software has truly reached its end of life rather than simply needing
another update.

Recent compliance frameworks have begun recognizing the importance of EOL
management. PCI DSS 4.0, effective March 31st, 2024, requires programs to track
end-of-life software and create remediation plans [2]. However, the open-source
community lacks a unified approach to communicating and managing lifecycle
information, leading to security vulnerabilities, compliance failures, and inefficient
resource allocation across the software supply chain.

This research addresses three fundamental questions. First, how to establish
definition of software end-of-life that includes the nuances of open-source
development lifecycle. Second, what management strategies effectively mitigate the
risks associated with end-of-life protocols. Third, how to design a standardized
protocols for end-of-life which provide clear, actionable lifecycle information.

Main text

Defining Software End-of-Life

The terminology surrounding software lifecycle transitions varies significantly
across the industry. End-of-life refers to software products that are no longer sold or
renewed, while end of support marks the cessation of support services, including
patches for critical vulnerabilities. This distinction becomes particularly complex in
open-source contexts where traditional sales models don't apply, and support may
come from community volunteers, commercial vendors, or hybrid models.
The software industry lacks formal decommissioning practices, typically retiring
products by terminating support and creating "abandonware" that persists in use
despite vendor abandonment. Netscape Communicator exemplifies this phenomenon:
following Mozilla's 2006 EOL declaration, the community fork SeaMonkey
continued development [3], highlighting the disconnect between vendor-defined EOL
and actual software utility. This practice, replicated across numerous platforms
through emulators and unofficial maintenance, demonstrates that ceasing support

fails to ensure retirement while creating security vulnerabilities in still active but

Conference proceedings 26

Future in the results of modern scientific research August 2025

unsupported systems [4].

The software lifecycle follows predictable patterns from inception through
retirement. This lifecycle starts with the software development phase, followed by
deployment, maintenance to fix bugs and improve functionality, and eventually
reaches a stage where maintenance is no longer feasible or cost-effective.

End-of-Life taxonomy

The following taxonomy for a shared understanding of the definition is
proposed.:

1). Vendor: Any entity (organization, community, or individual) responsible for
creating or maintaining a product. This includes open-source projects, not just
commercial companies.

2). Product: Any named deliverable (software, hardware, services,
specifications, etc.), regardless of origin, license, or distribution model.

3). Product Lifecycle: The full journey of a product from release (General
Availability) to retirement (End-of-Life). Lifecycles may include different stages of
support (full, maintenance, security-only), vary by vendor/product type, and evolve
over time.

The taxonomy of the key lifecycle milestones is proposed.

1). End-of-Sales (EoS): The last date a product can be purchased directly from
vendor channels. After EoS, support may continue, but no new sales.

2). End-of-Security-Support (EoSSec): The last date the vendor provides
security patches. Past this point, products become vulnerable, making this a crucial
compliance and risk management marker.

3). End-of-Life (EoL): The final point when the vendor ends all support
(development, updates, security fixes, technical assistance). Customers must migrate
to supported alternatives before this date.

Benefits and Challenges of Standardized EoL

The open-source ecosystem presents unique lifecycle management challenges.
Organizations must track various releases and updates for each OSS technology,

determining appropriate responses when OSS 1is no longer supported while

Conference proceedings 27

Future in the results of modern scientific research August 2025

maintaining security and compliance. Community-driven development models mean

that lifecycle decisions may be distributed across multiple stakeholders with varying

priorities and resources [5].

v

v

Main challenges:
Diverse Structures: Projects differ widely, making one-size-fits-all frameworks
difficult.
Limited Resources: Many projects lack funding or staff to manage lifecycle

programs.

v Decentralized Decisions: Consensus is harder in distributed, volunteer-driven

projects.

- Awareness & Adoption Gaps: Some maintainers may be unaware, hesitant, or
resistant to formalized approaches.

Resistance to Change: Preference for flexibility may slow adoption of
standards.

The following are a few benefits of a standardized EoL in the supply chain:
Clear Communication: Improves coordination between maintainers,

contributors, users, and customers.

v Trust & Reliability: Signals transparency and responsible management,

boosting confidence in projects and vendors.
Stability & Planning: Helps organizations plan roadmaps, allocate resources,
and reduce risks.
Sustainability: Encourages long-term project health, attracts contributors, and
supports funding.
Business Advantages: Streamlines product management, builds customer trust,
and ensures smoother transitions to new solutions.

Discussion.

The standardization of the software End-of-Life (EoL) addresses fundamental

sustainability challenges in open-source software development. By providing clear

lifecycle information, projects can better manage contributor expectations and

resource allocation. Organizations can make informed decisions about dependency

Conference proceedings 28

Future in the results of modern scientific research August 2025

adoption and support investments, potentially directing resources toward critical
projects approaching EOL. Software that has reached end of life may not follow
industry rules, compliance standards, or contractual responsibilities, standardization
of the EoL data directly addresses these concerns by providing auditable lifecycle
tracking that satisfies regulatory requirements while enabling proactive security
management.

The standardization of the software End-of-Life (EoL) represents a significant
advancement in supply chain security. By automatically linking lifecycle status with
vulnerability databases, organizations can prioritize remediation efforts and allocate
resources more effectively.

Summary and conclusions

This research presents a comprehensive analysis of software End-of-Life (EoL)
management challenges and proposes the standardization of the end-of-life software
lifecycle. By bridging the gap between open-source development practices and
enterprise lifecycle management requirements, the standardized End-of-Life (EoL)
approach facilitates sustainable software ecosystem growth while enhancing security
posture across the software supply chain. Adoption of such approach represents a
crucial step toward professionalizing open-source lifecycle management without
sacrificing the flexibility and innovation that characterize open-source development.
As software increasingly underpins critical infrastructure and business operations,
standardized lifecycle management becomes not just beneficial but essential for

ecosystem health and security.

References:

1. Assaad, Z., & Henein, M. (2022). End-of-life of software: How is it defined
and managed? arXiv. https://doi.org/10.48550/arXiv.2204.03800

2. XEOL, "End-of-Life Software and Compliance," XEOL Blog. [Online].
Available: https://www.xeol.i0/post/end-of-life-software-and-compliance.

3. Jeffrey, C., & Franco, J. (2020). What Ever Happened to Netscape Navigator?
Techspot. https://www.techspot.com/article/2077-netscape-navigator/

Conference proceedings 29

Future in the results of modern scientific research August 2025
4. McGraw, G. (2004). Software Security. IEEE Computer Society, 4, 1540—
7993.
5. Santos, O. (2023). Establishing standardized end-of-life and end-of-support

programs for software = and hardware. @ *Becoming a Hacker*.
https://becomingahacker.org/establishing-standardized-end-of-life-and-end-of-
support-programs-for-software-and-hardware-e3e231898e02

6. Santos, O., Schmidt, T., Roguski, P., Middlekauff, A., Cao, F., Demianchuk,
S., Rock, L., Murphy, J., Hagen, S., Chari, S., & Schaffer, T. (2025, April 24).
OpenEoX: A standardized framework for managing End of Life and other product
lifecycle information [Technical report]. OASIS Open. https://docs.oasis-
open.org/opencox/standardization-framework/openeox-standardization-framework-

technical-report.pdf

Article sent: 25.08.2025
© Demianchuk S.

Conference proceedings 30

