FEATURES OF DRYING ZEOLITE 13X IN A MICROWAVE FIELD

Authors

DOI:

https://doi.org/10.30890/2709-1783.2025-41-00-026

Keywords:

energy efficiency, microwave heating, drying, heat, zeolites.

Abstract

It has been proven that zeolites currently have a wide range of applications due to their large pore surface area; zeolites for thermochemical heat storage are of particular interest due to their ability to provide high energy density. It is known that fo

References

Microwave synthesis of zeolites and their related applications / X. Zeng et al. Microporous and Mesoporous Materials. 2021. Vol. 323. P. 111262. URL: https://doi.org/10.1016/j.micromeso.2021.111262.

Cherbanski, R., & Molga, E. (2009). Intensification of Desorption Processes by Use of Microwaves — An Overview of Possible Applications and Industrial Perspectives. Chemical Engineering and Processing: Process Intensification, Vol. 48, No. 1, (January 2009), pp. 48-58.

A. Rahman N. Rahmat M. Shariff. Microwave Drying Effects on the Properties of Alumina-Zeolite Foam // 2nd Annual International Conference on Green Technology and Engineering (ICGTE): Scientific Conference, The Open University, 1 October 2009 – 3 October 2009. – [S. l.]. – P. 521–524.

Intensification of TSA processes using a microwave-assisted regeneration step / E. Meloni et al. Chemical Engineering and Processing - Process Intensification. 2021. Vol. 160. P. 108291. URL: https://doi.org/10.1016/j.cep.2020.108291.

Adsorption performance and thermodynamic analysis of SAPO-34 silicone composite foams for adsorption heat pump applications / L. Calabrese et al. Materials for Renewable and Sustainable Energy. 2018. Vol. 7, no. 4. URL: https://doi.org/10.1007/s40243-018-0131-y.

Erprobung eines thermochemischen Langzeitwärmespeichers auf Basis eines Zeolith/Salz-Komposits / T. Nonnen et al. Chemie Ingenieur Technik. 2016. Vol. 88, no. 3. P. 363–371. URL: https://doi.org/10.1002/cite.201500136.

Zeolite Heat Storage: Key Parameters from Experimental Results with Binder‐Free NaY / S. Rönsch et al. Chemical Engineering & Technology. 2020. Vol. 43, no. 12. P. 2530–2537. URL: https://doi.org/10.1002/ceat.202000342.

Cherbański R. Calculation of Critical Efficiency Factors of Microwave Energy Conversion into Heat / R. Cherbański // Chemical Engineering & Technology. – 2011. – Vol. 34, no. 12. – P. 2083–2090. – Mode of access: https://doi.org/10.1002/ceat.201100405.

Microwave-induced regeneration of activated carbons polluted with phenol. A comparison with conventional thermal regeneration [Electronic resource] / C. O. Ania [et al.] // Carbon. – 2004. – Vol. 42, no. 7. – P. 1383–1387. – Mode of access: https://doi.org/10.1016/j.carbon.2004.01.010.

Experimental and Numerical Assessment of a Novel All-In-One Adsorption Thermal Storage with Zeolite for Thermal Solar Applications / M. Di Palo et al. Applied Sciences. 2020. Vol. 10, no. 23. P. 8517. URL: https://doi.org/10.3390/app10238517.

Експериментальне дослідження сушіння цеоліту «4а» у мікрохвильовому полі / І. Л. Бошкова та ін. Refrigeration Engineering and Technology. 2023. Т. 59, № 3. С. 197–204. URL: https://doi.org/10.15673/ret.v59i3.2658.

Published

2025-10-30

How to Cite

Hrechanovskyi, A. (2025). FEATURES OF DRYING ZEOLITE 13X IN A MICROWAVE FIELD. SWorld-Ger Conference Proceedings, 1(gec41-00), 25–31. https://doi.org/10.30890/2709-1783.2025-41-00-026