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Abstract. This research reviews the integration of artificial intelligence in structural cross-

section selection, highlighting supervised learning, reinforcement learning, evolutionary algorithms, 
and physics-informed models as complementary methodologies. Supervised surrogates achieve 
millisecond-scale predictions of buckling and strength with R² up to 0.98, while reinforcement 
learning agents navigate discrete section catalogs under code-compliance constraints to reduce 
weight by 8–12%. Evolutionary and generative frameworks yield novel geometries and human-
readable design formulas via symbolic regression. Hybrid physics-informed approaches embed 
equilibrium and buckling laws into neural networks, enhancing out-of-sample fidelity and uncertainty 
quantification through Bayesian methods. Case studies demonstrate 18-25% material savings and 
order-of-magnitude time reductions in both academic benchmarks and industry tools. The review 
identifies key challenges data scarcity, interpretability, regulatory alignment, and workflow 
integration and proposes future research directions including multi-fidelity learning, closed-loop AI-
FEA pipelines, standardized benchmarking, and real-time model updating via structural health 
monitoring. Finally, the potential of AI-augmented design for permanent formwork systems is 
explored, advocating high-fidelity datasets and pilot implementations for multi-physics optimization. 
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Introduction. 

Cross-section selection underpins the safe, economical, and code-compliant 

design of beams, columns, trusses, and slabs. Traditional approaches analytical 

formulas, empirical code provisions (Eurocode, AISC, ACI), and iterative numerical 

techniques such as finite element analysis (FEA) or the finite strip method are well 

established but resource-intensive, rely heavily on expert judgment for stability issues 

(local, distortional, global buckling), and often include conservative safety margins. 

Recent advances in artificial intelligence (AI) offer a means to augment engineering 

expertise, accelerate design iterations, and explore non-intuitive solutions across 

expansive design spaces, without supplanting professional judgment. 

AI Methodologies for Cross-Section Design 
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AI-based approaches to cross-section selection fall into four principal categories, 

each addressing distinct facets of the design challenge: 

Supervised Learning leverages labeled datasets of geometric, material, and 

loading parameters paired with performance outcomes. Artificial neural networks 

(ANNs), support vector machines (SVMs), Gaussian process regressors (GPRs), and 

ensemble methods (random forests, gradient boosting) provide millisecond-scale 

predictions of buckling loads and ultimate strengths, achieving R² up to 0.98 for cold-

formed steel channels and accurately classifying failure modes without repeated 

eigenvalue solves [12]. Bayesian extensions and SHAP-based interpretability mitigate 

“black-box” concerns, while limitations persist when extrapolating beyond the training 

distribution [1, 10, 11, 19]. 

Reinforcement Learning (RL) formulates section selection as a sequential decision 

problem. Graph-based agents, treating structural layouts as node-edge graphs, assign 

standard profiles with reward functions that integrate weight minimization and code 

compliance constraints. In planar frames, RL achieved lighter designs faster than 

particle swarm optimizers (PSO) [2]; multi-agent extensions to three-dimensional 

frames further accelerated convergence to minimum-volume configurations [3]. The 

principal trade-off is computational cost during training and policy interpretability. 

Evolutionary and Generative Algorithms include genetic algorithms (GAs), PSO, 

simulated annealing, and generative adversarial networks (GANs). Hybrid GA-ANN 

workflows have optimized lipped channel sections for web-crippling loads, producing 

superior designs to code recommendations [20]. GAN-based frameworks propose 

novel perforated or nonstandard profiles, while gene expression programming and 

multi-gene symbolic regression yield human-readable equations suitable for code 

integration [14]. These algorithms flexibly handle mixed variables and multi-objective 

criteria but require careful tuning and substantial computational resources for high-

dimensional searches. 

Hybrid Physics-Informed Models integrate analytical mechanics directly into 

learning pipelines. Physics-informed neural networks (PINNs) embed equilibrium and 

buckling equations into loss functions, ensuring out-of-sample fidelity. Multi-fidelity 
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training pipelines combine low-cost analytical or coarse FEA data with high-fidelity 

simulations, and online transfer learning adapts models via structural health monitoring 

(SHM) streams. Bayesian neural networks and Monte Carlo dropout furnish predictive 

distributions with confidence intervals. Implementations demonstrate surrogate 

predictions that replace thousands of FEA runs with millisecond-scale inferences, 

although loss weighting and multi-fidelity retraining introduce complexity. 

Performance, Cost, and Time Efficiency 

AI-driven methods yield substantial material savings, cost reductions, and time 

efficiencies in conventional structures. 

In academic benchmarks, graph-based RL achieved an 8% steel weight reduction 

and halved computational time compared to PSO in a two-bay, two-story planar frame 

[2], while multi-agent RL in 3D frames delivered a 12% volume reduction compared 

to simulated annealing [3]. 

Industry trials report 18–25% material procurement reductions, attributable to 

fine-tuned cross-section dimensions beyond manual heuristics. A Pennsylvania bridge 

block optimized via generative design realized a 20% material saving and 

correspondingly lower procurement and transportation costs. 

Supervised surrogates, trained on harmony-search-optimized datasets, furnish 

near-optimal member sizes in milliseconds versus hours of conventional analysis [7]. 

Fully automated “design co-pilot” platforms, such as Tsinghua’s structure-Copilot, 

propose reinforced-concrete shear-wall sizing over ten times faster than human 

engineers, with weight deviations within 20% [8]. 

Constraint-aware optimization ensures safety: RL reward penalties for code 

violations, Gaussian process regressions outpacing Eurocode and AISC for stainless-

steel tubular columns, and deep learning of web-crippling strengths all foster lean yet 

reliable designs [16, 19, 21]. 

AI in Thin-Walled Cross-Section Analysis 

Thin-walled elements, with their sensitivity to local, distortional, and global 

buckling modes, benefit from data-driven surrogates and inverse design. 

Buckling and Strength Prediction. Neural networks trained on finite-strip data for 
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cold-formed channels achieved R² ≈ 0.98 and >95% mode‐classification accuracy [12]. 

GPR models on tubular column simulations reduced mean absolute error by 30% 

compared to Eurocode 3, while ensemble methods elucidate feature importance (e.g., 

thickness, flange width) to guide stiffening strategies. 

Fire-Performance Modeling. ANNs, SVMs, random forests, and polynomial 

regressions benchmarked against Eurocode fire provisions for slender I‐beams 

achieved a 40% reduction in predictive error, accurately capturing temperature–

buckling interactions [10]. Deep belief networks further refine web-crippling capacity 

predictions under perforation. 

Inverse Design. Coupling ANN surrogates with genetic or swarm optimizers 

yields cross-section geometries that match FEA validations within 5% error. Symbolic 

regression via gene expression programming generates closed‐form formulas for 

design code adoption [14]. 

Interpretability and Uncertainty Quantification. Transfer learning adapts pre-

trained networks to new section families with minimal data. Explainable AI techniques 

(SHAP, LIME) reveal input contributions, and Bayesian networks provide calibrated 

confidence intervals aligned with traditional reliability indices. 

Case Studies and Translational Pathways 

Controlled experiments and pilot implementations illustrate the practical impact 

of AI methods. 

Academic Benchmarks. Harmony-search truss designs with neural surrogates, 

achieving >95% accuracy for 10-bar and 25-bar trusses in under a millisecond [7]. Qin 

et al.’s generative-design platform matched expert shear-wall proposals within a 20% 

weight deviation [8]. 

Commercial Tools. Autodesk’s Revit and Robot modules report 10–15% material 

savings for steel and concrete sections; Tekla Structural Designer’s automated steel-

sizing routine reduces manual rework by up to 30%. Cloud services recommend steel 

connection details in seconds. 

Workflow Integration. Symbolic regression yields explicit design equations 

adoptable in codes (e.g., Asghar et al.’s GFRP web-crippling formula within 3% error 
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[14]). Surrogate-augmented FEA pipelines reduce high-fidelity analyses by ~80%. 

BIM integrations enable direct import of loads and export of optimized section data. 

Proposed Enhancements and Future Directions 

To bridge the remaining gaps and foster widespread adoption, research should be 

pursued. 

Physics-Informed and Multi-Fidelity Learning: Embed shell stability and multi-

physics constraints (thermal, acoustic, durability) into PINNs; combine analytical 

formulas, coarse and fine FEA data for cost-effective pretraining and targeted fine-

tuning. 

Dynamic Model Updating: Implement online learning from SHM data to adapt 

surrogates over a structure’s service life; employ Bayesian and ensemble methods for 

real-time uncertainty quantification. 

Benchmark Repositories and Regulatory Alignment: Establish open-access 

datasets of thin-walled profiles and frame assemblies; define standardized metrics 

(weight reduction, time savings, safety margins) and community challenges; engage 

code committees to draft AI tool validation protocols and safety-factor methodologies. 

Extreme Load and Durability Modeling: Generate specialized datasets for 

seismic, blast, and fire scenarios; quantify long-term phenomena (creep, fatigue, 

corrosion); integrate life-cycle assessment and maintenance cost metrics into 

optimization objectives. 

Human-Computer Interaction and Explainability: Develop engineer-friendly 

XAI plugins (SHAP, saliency mapping) in CAD/FEA platforms; conduct user-

acceptance studies to refine interfaces and change-management strategies. 

Closed-Loop AI-FEA Workflows: Combine surrogate screening with targeted 

FEA validation and iterative retraining; automate mesh-refinement guidance; embed 

classifiers for input-deck error detection. 

Application to Permanent Formwork Systems 

Permanent formwork precast panels, profiled decks, insulated concrete forms 

present a multi-physics optimization challenge (hydrostatic pressure, composite action, 

thermal insulation, acoustic attenuation, fire resistance, constructability). AI surrogates 
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trained on composite FEA and experimental data enable millisecond predictions of 

structural, thermal, and acoustic performance. Inverse-design loops coupled with GAs 

or variational autoencoders generate novel profiles that satisfy multi-physics criteria. 

Hybrid AI-FEA workflows shortlist candidate sections and refine through detailed 

FEA, reducing simulation runs by an order of magnitude. Future work should expand 

high-fidelity datasets to include moisture transport, thermal diffusion, and corrosion 

mechanisms, and incorporate embodied carbon and maintenance metrics into objective 

functions. Real-world pilot projects instrumented with SHM systems are essential to 

close the design–operation feedback loop. 

Summary and conclusions. 

AI-augmented cross-section selection unifies supervised learning, reinforcement 

learning, evolutionary algorithms, and physics-informed models into a complementary 

toolkit that enhances material efficiency, accelerates design cycles, and preserves 

safety and code compliance. Benchmarks and pilot projects substantiate 8-25% 

material savings, order-of-magnitude time reductions, and high-fidelity predictive 

accuracy. To transition from research to routine practice, the community must address 

data scarcity, interpretability, regulatory frameworks, and workflow integration. 

Embedding AI within standardized benchmarks, explainable tools, SHM-driven 

adaptive learning, and cross-disciplinary collaboration will solidify AI-driven cross-

section optimization as a cornerstone of modern structural engineering. 
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