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Abstract  The article is about the motion of a nonlinear material system is considered, which 

is described by a nonlinear differential equation that is explicitly independent of time. Application  
of the small parameter method was shown an example, were considered  the oscillations of a 
nonlinear system - a mathematical and physical pendulums at large amplitudes. 
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Introduction. 
Already in the last century, there was a mathematical apparatus that, with proper 

development and generalization, could be applicable to the study of nonlinear 
oscillations, in any case, for oscillations close enough to linear ones. Sufficiently 
close to linear oscillations are usually called oscillations for which the corresponding 
differential equation, although it is nonlinear, contains some parameter ε included in 
this equation so that when this parameter is equal to zero, the nonlinear differential 
equation degenerates into a linear one with constant coefficients. It is assumed that 
the parameter μ is "small".  

Statement and solution of the problem 
Consider the motion of a non-linear material system, which is described by a 

non-linear differential equation that does not explicitly depend on time: 
2

..
( )x x f xk µ+ =                                                        (1) 

where μ is some parameter, which is a coefficient for a nonlinear continuous 
differentiable function f(x). It is assumed that the parameter μ is sufficiently small. 

We write the periodic solution in the form [1] 
   2

0 21 ...x xx xµ µ= + + +                                                (2) 
here x0, x1, x2 are unknown periodic functions of the circular frequency p and 
frequencies that are multiples of p, which are to be determined. We represent p2 as a 
p-polynomial in powers of the small parameter μ. 

2 22
1 21 2 ...p k b bµ µ= + + +  

Here are  b1,b2 are constant coefficients determined in the process of integration 
equation (1), their values are chosen in such a way that solution (2) is periodic, in 
which there are no so-called. "resonant" terms, unlimited increasing over time. 
Substituting solution (2) into equation (1), we obtain a system of inhomogeneous 
differential equations of the second order, in which the inhomogeneity is function of 
previous solutions. As an example, consider the oscillations of a nonlinear system - a 
mathematical or physical pendulums at large amplitudes, differential equations which 
are of the following form: 
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2 0sinkϕ ϕ+ =                                                      (3) 
Equation (3) is non-linear. Expand sinφ into a power series. 

3 5

sin ...
3! 5!
ϕ ϕϕ ϕ= + + +  

As an example, let us restrict the series to two terms, i.e. 
3

sin
6
ϕϕ ϕ= −  

then equation (3) takes the form 
                                 32 0kϕ µϕ= + =  (4) 

where 
2

6
kµ =  is the small parameter 

Let us represent the solution of Eq. (4) as a series in a small parameter, with up 
to terms containing m to the first power, then 

                                   0 1( ) ( ) ( )t t tϕ µϕ ϕ= +  
                                 2 2

1p k bµ= +  
(5)  
(6) 

Substituting (5) and (6) into equation (4) and limiting the expansion to terms, 
containing a small parameter μ to the first power, and equating to zero the terms of 
the equation that are free from μ, as well as the coefficient in bracket at μ , we obtain 
a system of differential equations [2]. 

                                  2
0 0pϕ ϕ+ =  

                                2 3
10 0 0p bϕ ϕ ϕ ϕ+ = +  

(7)  
 

(8) 
with initial conditions :  

                                 (0) , (0) 00aϕ ϕ= =  
 

(9) 
As is known, the solution of equation (7) under the appropriate initial conditions 

has the form 
                                  00 cosa ptϕ =  (10) 

To integrate equation (8), we introduce (10) into its right side and  get 
                                  2 2 3

1 1 1 0 0
3 1( )cos cos
4 4

oa b a pt a ptpϕ ϕ+ = + +  (11) 

To avoid the state of resonance, we equate the coefficient 
                                   2

1 0
3( ) 0
4

b a+ =  (12) 

Equation (11) will now take the form 
                                  2 3

1 1 0
1 cos
4

a ptpϕ ϕ+ =  (13) 

We find the solution of the inhomogeneous equation (13) as the sum of two 
solutions: private and general: 

                                 
1 2

1 1 1ϕ ϕ ϕ= +  (14) 
In this case 

         
1

1 21 cos sinD pt D ptϕ = +  
the constant Ф is determined by the substitution into equation (13), whence 
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3
0

232
AA

p
= −  

then the general solution of Eq. (14) can be written as [2] 
                               

1 3
0

1 21 2cos sin cos3
32
aD pt D pt pt

p
ϕ = + −  (15) 

By the initial conditions (9), we determine the constants D1 and D2, then the 
second approximation will take the form 

                                  
3

0
1 2 (cos cos3 )

32
a pt pt

p
ϕ = −  (16) 

To determine the desired law of oscillations ϕ, as well as the circular frequency 
p we use the results (10), (12) and (16): 

                              3

2

0 0
1cos (cos cos3 )

192
ka pt a pt pt
p

ϕ
 

= + − 
 

 

                              2 22
0

1(1 )
8

ap k= −  

                               2 0,5
0

1(1 )
8

p k a= −  

(17) 
 

(18)  
 

(19) 

Expanding (19) according to Newton's binomial formula, we obtain 
                               2

0
1(1 )

16
p k a= −  (20) 

 
Summary and conclusions. 
As follows from formula (20), the pendulum oscillates according to formula (17) 

with circular frequency p, which depends on the initial deviation a0, i.e. the 
frequency depends on the initial conditions and therefore the oscillations are not 
isochronous. 
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